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Abstract—Parallel sparse LU factorization is a key compu-
tational kernel in the solution of a large-scale linear system
of equations. In this paper, we propose two strategies to
address some scalability issues of a factorization algorithm on
modern HPC systems. The first strategy is at the algorithmic-
level; we schedule independent tasks as soon as possible to
reduce the idle time and the critical path of the algorithm. We
demonstrate using thousands of cores that our new scheduling
strategy reduces the runtime by nearly three-fold from that of
a state-of-the-art pipelined factorization algorithm. The second
strategy is at both programming- and architecture-levels;
we incorporate light-weight OpenMP threads in each MPI
process to reduce both memory and time overheads of a pure
MPI implementation on manycore NUMA architectures. Using
this hybrid programming paradigm, we obtain a significant
reduction in memory usage while achieving a parallel efficiency
competitive with that of a pure MPI paradigm. As a result, in
comparison to a pure MPI paradigm which failed due to the
per-core memory constraint, the hybrid paradigm could utilize
more cores on each node and reduce the factorization time on
the same number of nodes. We show extensive performance
analysis of the new strategies using thousands of cores of the
two leading HPC systems, a Cray-XE6 and an IBM iDataPlex.

I. INTRODUCTION

Parallel sparse LU factorization is widely used for solving

a large-scale linear system of equations in scientific and

engineering simulations. It can be used alone as a direct

solver, or it can be used as a preconditioner for an itera-

tive solver. However, implementing a parallel factorization

algorithm that is scalable in both time and memory is a

formidable task even for an expert in parallel computing.

This is because such an algorithm possesses many of the

fundamental challenges of parallel programming such as

highly irregular memory access patterns, large degree of task

and data dependencies, and imbalances in data distribution

and workload. This situation is exacerbated by the modern

HPC computers with heterogeneous manycore NUMA node

architectures. In this paper, we propose two strategies to ad-

dress some of the scalability issues of a parallel factorization

algorithm: the first is at the algorithmic-level; we schedule

independent tasks as soon as possible to reduce the idle

time and the critical path of the algorithm. The second is

at both programming- and architecture-levels; we employ a

hybrid programming paradigm to fully utilize the node-level

parallelism and memory of multicore NUMA architectures.

Our investigation focuses on a widely used open source

library SuperLU_DIST [22], which is a package for the

direct solution of a large-scale sparse general linear system

of equations on a distributed-memory cluster. It is a state-

of-the-art parallel direct solver capable of solving linear

systems with millions of unknowns from real-world appli-

cations [5]. The original target of SuperLU_DIST was the

earlier generations of distributed-memory systems, where

each compute node had one or a small number of processor

cores with the uniform access to the physical memory.

On a modern HPC computer with the multicore NUMA

node architecture, the parallel scaling of SuperLU_DIST
often stagnates on a few hundred of cores. Performance

profiling on 256 processor cores of the Cray-XE6 system

at NERSC revealed that about 81% of the factorization time

was spent in MPI Wait() and MPI Recv(). In other words,

for the 81% of the time, the processor cores were performing

neither computation nor communication. To reduce this

idle time, in this paper, we propose an algorithmic-level

strategy to statically schedule independent tasks as soon as

possible. Our experimental results will demonstrate that the

parallel factorization with this new scheduling strategy can

obtain speedups of up to three over the current version of

SuperLU_DIST which is based on a pipelined factoriza-

tion [22].

The Cray-XE6 system at NERSC is a representative of

the new generation of a multicore NUMA architecture.

Each node of this system has two tweleve-core MagnyCours

processors and 32GB of memory, averaging about 1.3GB of

memory per core. Even though our aforementioned schedul-

ing strategy shortens the critical path of the algorithm, there

are two hindering factors for SuperLU_DIST to fully

utilize all the cores on each node. The first factor is the

per-core memory constraint. The current SuperLU_DIST
is based on a pure MPI programming paradigm, where the

increase in the number of MPI processes often increases

the total memory requirement. This is because the total
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communication volume of the algorithm often increases with

an increase in the number of MPI processes, and moreover,

each message may be internally duplicated in multiple

communication buffers by an MPI implementation. Finally,

SuperLU_DIST has certain amount of serial memory

overhead associated with an MPI process (see Section III).

As a result, to solve a large-scale linear system under the

per-core memory constraint, SuperLU_DIST can often use

only a limited number of cores on each node. On the future

computer with hundreds or thousands of cores per node, the

per-core memory is expected to be even smaller [6].

The second factor is that on a multicore architecture, a

message-passing paradigm often has a greater time over-

head than a shared-memory paradigm. Therefore, even

when the per-core memory constraint did not hinder the

usage of all the cores on each node, the factorization

time may not scale. Hence, it is imperative to abandon

the pure MPI paradigm and resort to a certain type of a

hybrid programming paradigm that can exploit the NUMA

architecture. To demonstrate this, in the second part of

this paper, we incorporate a hybrid message-passing (MPI)

and shared-memory (OpenMP) programming paradigm into

SuperLU_DIST. Using this hybrid paradigm, we ob-

tained a significant reduction in memory usage while

achieving a parallel efficiency competitive to that of a

pure MPI paradigm. As a result, in comparison to a pure

MPI paradigm, the hybrid paradigm could utilize more cores

on each node and reduce the factorization time on the same

number of nodes.

The rest of the paper is organized as follows. In Sec-

tions II and III, we first discuss related works and give

a brief overview of SuperLU_DIST, respectively. Then,

in Section IV, we describe two techniques, look-ahead and

static scheduling, which are designed to reduce the idle time

during the parallel factorization. Next, in Section V, we

discuss our attempt to incorporate a hybrid MPI+OpenMP

programming paradigm into SuperLU_DIST; The perfor-

mance results in Section VI will demonstrate that these

techniques can significantly improve the performance of

SuperLU_DIST on leading HPC computers based on

multicore NUMA node architectures. We conclude with final

remarks in Section VII.

II. RELATED WORK

There have been several scheduling strategies and hybrid

programming paradigms proposed for parallel sparse direct

solvers. In this section, we briefly describe those that are

most relevant to the ones proposed in this paper.

PasTiX [15] implements a parallel left-looking supernodal

factorization algorithm based on a hybrid MPI+pthread

programming paradigm [16]. It is capable of solving both

symmetric and unsymmetric systems, but it is most effec-

tive for solving a linear system with a symmetric positive

define (SPD) coefficient matrix A. It uses a combination

of a static and dynamic scheduling schemes based on both

elimination tree of |A|T + |A| and performance models

capturing both computation and communication [9]. An-

other relevant solver is WSMP [13], [14] which imple-

ments multifrontal factorization algorithm for solving SPD

and unsymmetric systems. It uses a hybrid MPI+pthreads

programming paradigm, and an assembly tree (elimination

tree) for scheduling. More recently, Hogg et al. used a

dynamic scheduler for a shared-memory supernodal algo-

rithm to factorize an SPD matrix [17]. The dependencies

among the tasks are represented by an implicit direct acyclic

graph (DAG), and the dependencies are resolved by keeping

track of the outstanding incoming edges at runtime.

In comparison to these previous works, we focus on

SuperLU_DIST which implements a supernodal right-

looking LU factorization algorithm for solving general

sparse linear systems. We first propose a static scheduling

strategy which uses one of the following two underlying

graphs to represents the task dependencies: the symmetri-

cally pruned DAG of the LU factors and the elimination

tree of |A|T + |A|. We show that our scheduling strategy

has very little runtime overhead on a large-scale multicore

clusters and can significantly reduce the factorization time.

We then study MPI+OpenMP hybrid paradigm to further

enhance the performance of SuperLU_DIST.

III. OVERVIEW OF SUPERLU_DIST

To compute the solution of a sparse linear system,

SuperLU_DIST first computes an LU factorization of the

coefficient matrix, and then applies the forward and back-

ward substitutions. The LU factorization typically dominates

the solution time and is carried out in the following three

steps:

1) Matrix pre-processing: Before the numerical fac-

torization, the coefficient matrix A is first pre-processed to

achieve two goals. The first goal is to enhance the numerical

stability through static pivoting and matrix equilibration;

i.e, we compute a row permutation matrix Pr, and a row

and column equilibration matrices Dr and Dc. The se-

rial code MC64 developed by Duff and Koster [7], which

implements a maximum weighted matching algorithm, is

employed. The algorithm computes Pr to maximize the

product of the diagonal entries, and it also computes Dr

and Dc simultaneously so that the nonzero diagonal entries

of PrDrADc are one in their absolute values and all the off-

diagonal entries are less than or equal to one in their absolute

values. It has been shown that these pre-processing tech-

niques make the LU factorization numerically as stable as

that using partial pivoting for a wide range of problems [21].

Hence, SuperLU_DIST does not employ dynamic pivoting

(e.g., partial pivoting) during the numerical factorization.

The second goal of the pre-processing is to symmetrically

reorder the matrix PrDrADc such that its LU factors

remain sparse. This reduces the computational and storage
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for k = 1, 2, . . . , ns do
1. Panel factorization

1.1 Column computation of L(:, k).
a. if pid ∈ PC(k) then
b. compute the block column L(k : ns, k)

(communicate U(k, k) among PC(k))
c. send L(k : ns, k) to required processes in PR(:)
d. else
e. receive L(k : ns, k) if required
f. end if

1.2 Row computation of U(k, :).
a. if pid ∈ PR(k) then
b. wait for U(k, k)
c. compute the block row U(k, k + 1 : ns)
d. send U(k, k + 1 : ns) to required processes in PC(:)
e. else
f. receive U(k, k + 1 : ns) if required
g. end if

2. Outer-product updates of trailing submatrix.
a. for j = k + 1, k + 2, . . . , ns with U(k, j) �= ∅ do
b. for i = k + 1, k + 2, . . . , ns with L(i, k) �= ∅ do
c. if pid ∈ PR(i) ∩ PC(j)
d. A(i, j)← A(i, j)− L(i, k)U(k, j)
e. end if
f. end for
g. endfor

end for

Figure 1. Numerical factorization algorithm in SuperLU_DIST.

costs of the LU factorization. The reordering also helps

to reduce communication and improve the load balance of

numerical factorization [4]. Such a matrix ordering can be

computed, for example, using a nested dissection algorithm

of METIS [18] on the sparsity structure of |PrA|T + |PrA|.
For the remaining of this paper, we use A to denote the

matrix after the pre-processing is applied.

2) Symbolic factorization: The main benefit of static

pivoting over dynamic pivoting is to permit a priori determi-

nation of the sparsity structures of the LU factors before the

numerical factorization. An efficient symbolic factorization

algorithm [11], [21], [23] has been developed to determine

the sparsity structure, set up the required data structures,

and schedule all the communication and computation for the

numerical factorization. This often makes SuperLU_DIST
more scalable than the other solvers based on dynamic

pivoting [4].

3) Numerical factorization: The numerical factoriza-

tion is based on a fan-out (right-looking, outer-product)

supernodal LU factorization algorithm. A supernode is a set

of consecutive columns of L with a dense triangular block

just below the diagonal and with the same nonzero structure

below the triangular block. To achieve good parallelism

and load balance, the MPI processes are assigned to the

supernodal blocks in a 2D cyclic layout. Figure 1 shows the

pseudocode of the factorization algorithm, where ns is the

number of supernodes, pid is the ID of this process, and

PC(k) and PR(k) are the groups of processes assigned to

(a) Coefficient matrix A. (b) LU factors of A.

Figure 2. Nonzero patterns of a matrix A and its LU factors.

the k-th supernodal column and the k-th supernodal row,

respectively. Step 1 of the pseudocode corresponds to the

k-th panel factorization, where the k-th supernodal column

of L and the k-th supernodal row of U are computed. At

Steps 1.1.c and 1.2.d, each process in PC(k) and PR(k)
sends its local blocks of the factors to the processes assigned

to the same row and column, respectively. Then, Step 2

updates the trailing submatrix using the k-th supernodal

column and row of the LU factors. To take advantage of

the sparsity of A, the block A(i, j) is updated only if both

blocks L(i, k) and U(k, j) are not empty. More detailed

description of the algorithm can be found in [22]

IV. NEW STATIC TASK SCHEDULING STRATEGY

The factorization algorithm in Figure 1 follows a se-

quential flow, i.e., the panel factorizations and the trailing-

submatrix updates are performed in sequence. For instance,

the MPI processes in PC(k) and PR(k) must wait for the

k-th diagonal block to be factorized before starting its panel

factorization. Moreover, all the processes must wait for the

panel factorization to complete before updating the trailing-

submatrix. On the other hand, at each step, multiple panels

may be ready to be factorized since they will not be updated

by the remaining panels due to the sparsity of the matrix.

Since several MPI processes may be idle waiting for the k-th

panel factorization to complete, these MPI processes can be

used to factorize the rest of the ready-to-be-factorized panels

and reduce the idle time. Furthermore, by factorizing and

sending these panels as soon as possible, their computation

and communication can overlap with other computation and

communication. In this section, we describe a new task

scheduling strategy to exploit these parallelism that are not

fully exploited in Figure 1.

A. Task dependency graph of sparse factorization

In this section, we introduce the task dependency graph

of sparse LU factorization, which is an important tool for

developing our scheduling algorithm. We will use the 11×11
supernodal matrix shown in Figure 2 for illustration, where

each column and row of the matrix represent a supernodal

column and row, respectively. Now, consider Step 2 of

the factorization algorithm in Figure 1. We see that the
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j-th column is updated by the k-th column only if the

block U(k, j) is not empty. Similarly, the i-th row is updated

by the k-th row only if the block L(i, k) is not empty. These

dependencies can be represented by a directed graph, where

the k-th node represents the k-th panel factorization, and for

each k-th node, there is a directed edge (k, j) or (k, i) for

each non-empty block U(k, j) or L(i, k), respectively. The

edge (k, j) (or (k, i)) represents the dependency that the k-th

column (or row) updates the j-th column (or the i-th row).

Figure 3 shows the dependency graph of the 11× 11 matrix

in Figure 2.

9 10 11

7 4 63

581

2

Figure 3. Dependency graph of LU factorization.

Unfortunately, it is usually not efficient to use the graph

in Figure 3 as a scheduling tool. This is because it contains

excessive amount of redundant information. For example,

there are an edge (7, 10) and a path 7 → 9 → 10. Hence,

the edge (7, 10) is redundant.

A transitive reduction of a directed graph encompasses

all the dependency information with the minimum number

of edges [3]. However, its construction can be expensive.

One alternative is to use a so-called symmetrically pruned

graph [8]. To construct the pruned graph, we first identify the

smallest index sk such that U(k, sk) and L(sk, k) are the

first symmetrically matched non-empty blocks for each k.

Then, we prune all the edges (k, j) for j > sk. The white

circles in the matrix of Figure 2(b) and the dashed edges

in the graph of Figure 3 represent the pruned edges. From

now on, we refer to this symmetrically pruned graph as the

reduced directed acyclic graph, or rDAG in short, of the LU

factors. A node of the rDAG without any incoming edges is

referred to as a source, while a node without any outgoing

edges is called a sink. A similar task graph was used in [12]

for a left-looking LU factorization algorithm, where only

the column dependency needed to be enforced. On the other

hand, our k-th panel factorization task factorizes both k-th

row and column, and our task graph must keep track of both

column and row dependencies.

For a symmetric matrix A, its rDAG is identical to its

transitive reduction. Furthermore, in this case, rDAG is a

tree, which is commonly referred to as an elimination tree, or

etree in short, and is used extensively to study the behavior

of sparse factorizations [24]. Just like rDAG, the k-th node

of the etree represents our k-th panel factorization. There

is an edge (k, j) from the k-th node (a child) to the j-th

node (the parent) if U(k, j) is the first non-empty block in

(a) Symmetrized
matrix |A|T + |A|.

(b) LU factors of |A|T +
|A|.

Figure 4. Nonzero patterns of |A|T + |A| and its LU factors.

the k-th row of the U -factor. In the etree, a node without

incoming edges is called a leaf, and the node without

outgoing edges is referred to as a root. Even for the LU

factorization of an unsymmetric matrix A, the etree of

the symmetrized matrix ̂A = |A|T + |A| can be used to

capture both column and row dependencies of the panel

factorizations. However, this etree of the symmetrized matrix

can overestimate the true dependency of the panels in the

actual unsymmetric factorization. On the other hand, rDAG

contains some redundant edges, but it does not overestimate

the dependency unless numerical cancelation occurs during

the numerical factorization. Figures 4 and 5 respectively

show the sparsity structure and etree of the symmetrized

matrix ̂A of the 11×11 matrix A in Figure 2. In comparison

to the rDAG in Figure 3, the etree in Figure 5 greatly

overestimates the dependency of the panels, where the

critical path of the etree is of length six while that of rDAG

is of length three.

11

10

1

2 3

4

8 7

9

5 6

Figure 5. The etree of |A|T + |A|.

For scheduling the panel tasks, the final LU factors will be

correct as long as the following task-dependency invariant

is preserved: before the j-th panel factorization, all the

preceding updates to the j-th column and row must be
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completed. In other words, before scheduling the j-th task,

all the tasks corresponding to the nodes in the dependency

graph, which can reach the j-th node following the directed

paths, must be completed.

Since our panel factorization factorizes both column and

row, from now on, when we say that a column is factorized,

the corresponding row is also factorized. Our discussion

will focus on the etree, but will comment on how it can

be extended to the rDAG.

B. Look-ahead

Using the aforementioned task dependency graph, we can

schedule the panel factorization tasks in an order from the

leaves to the root of the etree or from the sources to the

sink of the rDAG. After the k-th panel updates the j-th

column and row, the corresponding edge (k, j) is removed

from the graph, potentially making the j-th node a leaf or

source. These leaf-nodes represent the columns and rows

that can be factorized. If we factorize all the leaf-nodes and

asynchronously send the results to the trailing submatrix

before updating the remaining submatrix, the idle time of

the processes may be minimized. Unfortunately, factorizing

and asynchronously sending all the leaf-nodes may require

infeasibly large memory to store the pending messages.

To reduce the memory requirement, we look-ahead only

a few next supernodal columns in a so-called look-ahead

window of size nw and see if they can be factorized. Specif-

ically, if the j-th node in the look-ahead window becomes

a leaf after the removal of the edge (k, j); i.e., this is the

last update on the j-th column, then after the j-th column is

updated, we immediately factorize the j-th column and send

it to the trailing submatrix. This process is applied to all

the columns with the non-empty block U(k, j) in the look-

ahead window (i.e., j = k + 1, k + 2, . . . , k + nw). Finally,

the remaining columns outside the look-ahead window are

updated as before. Figure 6 shows the pseudocode of the

look-ahead algorithm, and Figure 7 illustrates the algorithm.

If nw > 1, then the k-th column is factorized before the

k-th step. This is because before the end of the (k − 1)-th
step, all the dependencies on the k-th column are removed,

and since the k-th column is in the look-ahead window at the

(k − 1)-th step, it is factorized. Hence, at the beginning of

the k-th step, if the block U(k, j) is not empty, then the k-th

column can be used right away to update the j-th column.

Note that at the beginning of the k-th step, we first check

if the (k+nw)-th column, which was not in the look-ahead

window during the (k − 1)-th step, is already a leaf.

We now describe how we look-ahead supernodal rows.

Let us assume that the j-th node in the look-ahead window

becomes a leaf after the edge (k, j) is removed. Hence,

the j-th column is factorized right after being updated with

the k-th panel. On the other hand, the j-th row cannot

be factorized, yet, if a block U(j, �) for � > j in the

j-th row needs to be updated. This is why the rows in

0. Initialize look-ahead window

a. set nw (look-ahead window size)

b. n0 = 1 (index of the next column in window)

for k = 1, 2, . . . , ns do
1. Look-ahead the new columns in the window.

a. for j = n0, . . . , k + nw do
b. Panel factorize A(j : ns, j) if possible

(communicate U(j, j) among PC(j), and

isend L(j : ns, j) to PR(:))
c. end for
d. n0 = k + nw + 1

2. Look-ahead the rows.

a. for i = k + 1, . . . , k + nw do
b. Factorize A(i, i : ns) if U(i, i) has arrived

(isend U(i, i : ns) to PC(:))
c. end for

3. Wait for U(k, k) and factorize U(k, :) if needed.

4. Wait for U(k, k : ns) and L(k : ns, k).
5. Look-ahead factorization

a. for j = k + 1, . . . , k + nw with U(k, j) �= 0 do
b. Update A(j : ns, j)
c. Panel factorize A(j : ns, j) if possible

(communicate U(j, j) among PC(j), and

isend L(j : ns, j) to PR(:))
d. end for

6. Update the remaining trailing matrix.

end for

Figure 6. Pseudocode of look-ahead factorization.

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

Figure 7. Illustration of look-ahead factorization.

the look-ahead window are factorized separately from the

columns. Specifically, when the j-th node becomes a leaf,

the corresponding diagonal process (e.g., process 3 on the 4-

th diagonal block in Figure 1) first factorizes its supernodal

blocks in the j-column, and then sends the diagonal block

to the processes in the same column (e.g., process 0). While
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the diagonal process performs its panel factorization, the rest

of the processes in the j-th column are blocked. As soon as

these processes in the column receive the diagonal block,

they perform the panel factorization of their local blocks in

the j-th column and send the results to the processes in

the same row (e.g., process 3 sends to processes 5, and

process 0 sends to process 2. Note that the results are

sent only to the processes that require them; i.e., to the

processes in the columns with the non-empty blocks in the

j-th row). On the other hand, the panel factorization of the

rows is implemented using non-blocking communication,

and the processes perform the panel factorization of the row

only after all the trailing updates with the k-th panel are

completed and when the diagonal block is received (Step 2
of Figure 6). Hence, the process blocks only at the k-th step

if the k-th diagonal block U(k, k) has not been received, yet

(Step 3).

This look-ahead technique has been used for dense matrix

factorization [19], where the speedup of about 1.7 was

reported on a shared-memory computer with two 1.8GHz

dual-core AMD opteron 265 processors. SuperLU_DIST
already implements a pipelining mechanism, where the next

(k+1)-th column is factorized before the remaining columns

are updated. This is equivalent to look-ahead with the win-

dow size of one. In [22], pipelining reduced the factorization

time by 10% to 40% on 64 processors of a Cray-T3E system.

Here, we generalize this idea to an arbitrary look-ahead

window size, which allows higher degree of parallelism and

overlapping of communication and computation.

C. Bottom-up topological ordering

The look-ahead mechanism in Section IV-B pro-

vides a great potential to reduce some serialization

in SuperLU_DIST. However, even after the integration

of look-ahead, we observed that on 256 cores of Cray-

XE6, about 76% of the numerical factorization time was

still spent at the synchronization points (e.g., Steps 3 and

4 of Figure 6). This is because even though many of the

panel factorization tasks were leaves, they were outside the

look-ahead window. Since these tasks enter the look-ahead

window from the first to the ns-th task in the sequence,

the ordering of these tasks has a significant impact on the

performance of look-ahead. We next propose an ordering

of the supernodal columns to increase the potential of the

tasks within the look-ahead window being leaves. Our main

objective is to find an ordering of all these tasks as given

in the outer loop over k in Figure 1 so that the critical

path of the algorithm is shortened. Notice that this loop

transformation is possible only for a sparse matrix A since

its task dependency graph is not a complete graph; whereas

the dependency graph of a dense matrix is complete.

Let us first discuss how SuperLU_DIST currently or-

deres or schedules these tasks. The symbolic factorization

algorithm permutes the columns of the coefficient matrix ac-

11

1

2 3

4

5 6

7

9 8 10

(a) postordering

11

1

6 2

7

8 3

4

9

510

(b) bottom-up
ordering

Figure 8. Static scheduling based on etree.

cording to a postordering of the etree, in which the children

are numbered before their parent and the nodes within any

subtree are numbered consecutively (see Figure 8(a)).1 This

ordering is motivated to obtain larger supernodes without

changing the sparsity structure of the LU factors. The reason

this ordering may increase the sizes of the supernodes is

the following. The sparsity structure of the fill generated

in the j-th column is contained in the union of that of

the j-th column of A and those of the columns of the L-

factor, which correspond to the descendants of the j-th node

in the etree [10]. Thus, after the matrix A is permuted in

the postordering, the nodes corresponding to the adjacent

columns are likely to have a large number of same descen-

dants and are expected to have similar sparsity structures

in the L-factor. As our symbolic factorization subroutine

locates a supernodal column in the postorder, it sets up the

data structure to store the column. Hence, these supernodal

columns are stored at the contiguous memory locations in

the postorder. Then, during the numerical factorization, the

supernodal columns are factorized in the same postorder

since this improves data locality of computing the LU

factors. Unfortunately, this postordering limits the number of

supernodal columns that can be factorized in the look-ahead

window. This is because the look-ahead window contains

only the nodes in a small subtree of the etree, while missing

the other leaf-nodes in the other parts of the tree, which are

ready to be factorized.

To mitigate this problem, we use a static scheduling

scheme based on a bottom-up topological ordering of the

etree, in the spirit of breadth-first search (see Figure 8(b)).

This ordering can be computed using a FIFO queue. First, all

the initial leaf-nodes in the etree are pushed into the queue

(the nodes 1 through 5 in Figure 8(b)). Then, the first node

in the queue is popped to be scheduled, and if the removal

1The nested dissection ordering is one example of postordering.
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of this node generates a new leaf-node in the etree, then the

new leaf-node is pushed into the end of the queue. If we

use a priority-queue instead of a FIFO queue, then several

options exist to schedule the leaf-nodes in the queue. In our

implementation, to shorten the critical path of the algorithm,

we try to schedule the leaf-node that is furthest away from

the root first. This is done by ordering the initial leaf-nodes

in the descending order of their distance from the root. Then,

the new leaf-nodes are pushed into the FIFO queue as the

nodes in the queue are processed (see Figure 8(b)).

For an unsymmetric matrix, we can either use the etree

of the symmetrized matrix |AT |+ |A| or use the rDAG by

scheduling all the source-nodes of the rDAG first. With the

combination of the static scheduling and look-ahead, only

about 36% of the numerical factorization time is now spent

at the synchronization points on the 256 cores of Cray-

XE6. This scheduling strategy will be incorporated into the

upcomming version 3.0 of SuperLU_DIST.

V. HYBRID PROGRAMMING

With the advent of multicore architecture, we are seeing

an increasing number of cores per node and a simpler core

design. In the near future, the number of cores per node is

expected to be in the order of hundreds or thousands [6]. On

the other hand, the size of the memory on each compute node

is expected to be about the same or smaller due to power

constraint. Using a pure MPI programming paradigm is not

appropriate for such light-weight core designs, especially

on NUMA architectures. For instance, the small amount of

per-core memory can become a limiting factor for running

one MPI process per core since each MPI process adds

certain amount of communication buffer overhead. Even

if we have sufficient memory to pack hundreds of MPI

processes on each node, the network adapter on the node

could become a serious bottleneck when many of these

tasks communicate off-node. In order to effectively utilize

the node-level core resources, the on-node parallel execution

model must incorporate fine-grained data parallelism to

reduce the message passing overhead. Hence, it becomes

imperative to investigate new programming paradigms other

than a pure MPI paradigm. In this section, we describe how

we integrated a hybrid message-passing and shared-memory

programming paradigm into SuperLU_DIST to adapt to

the modern multicore cluster.

The computational cost of numerical factorization is typ-

ically dominated by the trailing submatrix update, where

each process updates several independent blocks of the

trailing submatrix at each step. We incorporated light-weight

OpenMP threads in each MPI process to update disjoint

sets of these independent blocks in parallel. We chose to

use OpenMP over other threading or data parallel languages

because it is production-ready, easily accessible, and widely

supported.
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Figure 9. Mapping of threads to supernodal blocks. The light-blue blocks
represents the non-empty blocks in the current panel. Four MPI processes
are assigned to blocks in a 2×2 grid, where the numbers inside the blocks
indicate the process ID. Each MPI process generates four threads, where
the blocks in blue, green, red and yellow are assigned to the first, second,
third and fourth thread of the process 1, respectively. Only the active blocks
are assigned to threads.

There are several options as to how to assign the indepen-

dent blocks to the threads. For instance, a process can assign

its local supernodal columns of the trailing submatrix to the

threads in a 1D block fashion; i.e., the t-th thread updates

(t − 1) · h-th to (t · h − 1)-th columns, where h = nc

nt
, nt

is the number of threads, and nc is the number supernodal

columns assigned to this process (see Figure 9(a)). Since

these columns are contiguous in memory, each thread can

access the columns without large stride. However, with this

layout, the number of threads is limited by the number of

columns. Another approach is to assign the blocks in a

2D cyclic fashion; namely the (i, j)-th block is assigned

to (br · tc + bc)-th thread, where the threads are organized

into a tr × tc grid (i.e., nt = tr · tc), br = mod(i, tr), and

bc = mod(j, tc) (see Figure 9(b)). Since the blocks assigned

to a thread are not contiguous in memory, accessing these

blocks incurs some overhead. However, this offers more

parallelism than the 1D layout does. We chose to use the

1D block layout if the number of columns is greater than

the number of threads. Otherwise, we use the 2D cyclic

layout if the number of blocks is greater than the number

of threads.2 Finally, we use a single thread to update the

trailing submatrix if there are not enough blocks.

This hybrid programming paradigm obtained significant

reduction in memory usage while achieving the same level

of parallel efficiency as the pure MPI paradigm. As a result,

in comparison to the pure MPI paradigm which failed due to

the per-core memory constraint, this hybrid paradigm could

2In our experiments, the thread grid is as close to a square grid as
possible.
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Name Application Source Type Symm. n nnz
n

fill-ratio

tdr455k Accelerator Omega3P real Yes 2, 738, 556 41 12.3
matrix211 Fusion M3D-C1 real No 801, 378 161 9.9
cc linear2 Fusion NIMROD complex No 259, 203 109 7.1
ibm matick Circuit simulation IBM complex No 16, 019 4, 005 1.0
cage13 DNA electrophoresis UF collection real No 445, 315 17 608.5

Table I
TEST MATRIX PROPERTIES.

use more cores on each node and reduce the factorization

time on the same number of nodes.

VI. PERFORMANCE RESULTS

In this section, we study the performance of the techniques

proposed in this paper. We first describe our testbeds, test

matrices, and experimental setups in Sections VI-A, VI-B,

VI-C, respectively. Then, we present the effects of static

scheduling and hybrid programming on the performance of

SuperLU_DIST in Sections VI-D and VI-E, respectively.

A. Experimental testbeds

We conducted our experiments to examine the perfor-

mance of the proposed techniques on two leading HPC sys-

tems at the National Energy Research Scientific Computing

Center (NERSC). In this section, we briefly describe our

experimental testbeds.

Cray-XE6 (Hopper): Hopper is a Cray-XE6 system and

placed number eight on the latest Top500 Supercomputer

list (June 2011). It consists of 153, 216 compute cores

and 217TB of total memory, and has a peak performance

of 1.28 petaflops/sec. Each compute node consists of two

twelve-core AMD Magny-Cours 2.1GHz processors, giving

each node 24 cores. Each Magny-Cours has two six-core

Bulldozer CPUs connected by interconnect in one package,

where each CPU has its own local memory controllers.

Hence, it provides a NUMA architecture within each pack-

age. Each compute node has 32GB of memory with about

1.3GB of memory per core when all the cores are used on

the node. These compute nodes are connected by the Cray

Gemini interconnect that forms 3D torus.

IBM iDataPlex (Carver): Carver is an IBM iDataPlex

system with 3, 520 processor cores. The compute node used

for our experiments has two quad-core intel Xeon X5550

Nehalem 2.7GHz processors, and 24GB of memory. These

nodes on Carver do not have disk, and about 4GB of the

memory is used to store the system files. Hence, each core

has about 2.5GB of memory when the node is fully packed.

For high-performance message passing on the interconnect

between the nodes, 4X QDR InfiniBand technology, with

32Gb/sec of point-to-point bandwidth, is used.

More information about our testbeds can be found at

https://www.nersc.gov/systems.

B. Test matrices

The applications of our main interests are the numerical

simulations (Omega3P) to model particle accelerator cavi-

ties [2] and those (M3D-C1 and NIMROD) to model fusion

energy devices [1]. The accelerator simulation involves non-

linear eigenvalue problems for solving discretized Maxwell

equations, where the solutions of the highly-indefinite linear

systems are needed for the shift-invert operations. When the

shift is close to an actual eigenvalue, these linear systems

are close to singular and extremely difficult to solve using

a preconditioned iterative method. The numerical simula-

tion of the fusion energy devices requires the solution of

linear systems of the discretized extended MHD equations,

which are unsymmetric and indefinite. Besides these, we

have selected two matrices from the other disciplines; one

from a circuit simulation at IBM, and the other for DNA

electrophoresis from the University of Florida sparse matrix

collection. Table I shows the properties of our test matrices.

C. Experimental setup

For all of our experiments in this paper, we used the

default setups of SuperLU_DIST; i.e., we used MC64
for static pivoting and equilibration to enhance numerical

stability, a serial nested dissection algorithm of METIS to

preserve the sparsity of the LU factors, and serial symbolic

factorization to setup the data structures required for the

numerical factorization. These serial matrix pre-processing

and symbolic factorization algorithms require each MPI

process to store the global coefficient matrix. It is possible

to use parallel pre-processing algorithms and the parallel

symbolic factorization [11] by replacing MC64 and METIS

with a simple parallel matrix equilibration [22] and a parallel

nested dissection of ParMETIS [18] or PT-SCOTCH [20],

respectively. However, since SuperLU_DIST does not per-

form any dynamic pivoting, MC64 may be necessary for

ill-conditioned problems. Furthermore, the matrix orderings

returned by ParMETIS or PT-SCOTCH would be different

using different numbers of processes, and this would make it

difficult to compare the parallel performance of the proposed

techniques on different numbers of processes.

D. Performance results of static scheduling

Figure 10 shows the effects of the window size nw on

the performance of static scheduling on the Cray-XE6. In

the figure, the bars with the window size of one show
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Figure 10. Effects of window size on performance of static scheduling.

the numerical factorization times of the latest version 2.5

of SuperLU_DIST, while those with the window size

of greater than one deploy the new look-ahead and static

scheduling strategies in the upcoming release version 3.0.

We see that the integration of look-ahead and static schedul-

ing significantly reduced the factorization time by reducing

the synchronization time and overlapping communication

with computation. The improvement stagnated with the

window size greater than 10.

Table II shows the performance of the static scheduling for

all the test matrices with the fixed window size of nw = 10.

Specifically, we show the performance of look-ahead alone

(“look-ahead” in the table) and the combination of look-

ahead with static scheduling (“schedule”), and compare it

with that of version 2.5 (“pipeline”). In the table, we clearly

see that with a large number of processes, the factorization

time was dominated by the communication time, which

is shown in parentheses.3 Since the communication time

increased with the number of MPI processes, the pipelined

factorization did not scale beyond hundreds of processes.

Even though the look-ahead alone was not effective, when it

was combined with the static scheduling, the communication

time was significantly reduced, obtaining the speedups of up

to 2.9 over the pipelined factorization time. Figure 11 shows

these results visually for tdr455k and matrix211.

For cage13, the factorization was slower using the static

scheduling on a small number of cores (e.g., 8 or 32 cores).

This is mainly due to the overhead associated with the static

scheduling such as irregular access to the panels and poor

data locality. However, as the number of cores increases, the

communication started to dominate the factorization time,

and the static scheduling was able to obtain significant

speedups of up to about 2.6.

We also see that our scheduling strategy could not ob-

tain significant speedups for ibm matick. This is because

ibm matick and its LU factors are much denser than the

other test matrices. Hence, its task dependency graph is

3Integrated Performance Monitoring (IPM) was used to measure the
times spent on MPI communication.
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Figure 11. Factorization (MPI communication) time in seconds, with
v2.5 and v3.0 on Hopper.

closer to a complete graph. This provides only a small

potential of reducing the idle time by reordering the matrix.

In Table III, we show the experimental results on Carver.

The maximum number of nodes that a user can obtain on

Carver is 64, where each node has eight cores. Hence, in

order to use 512 cores, we must use all of the eight cores

on each of the 64 nodes. Unfortunately, this did not provide

enough memory to solve some of the linear systems on 512
cores. However, similar to the results on Hopper, even on

hundreds of cores, significant speedups was obtained using

the static scheduling. In Section VI-E, we study the memory

usage in more details.

Number of cores
version 8 32 128 512

results for tdr455k
cores/node 2 4 4 8
pipeline 195.9 65.7 39.4 OOM
schdule 172.3 47.0 17.8 OOM
results for matrix211
cores/node 8 8 8 8
pipeline 46.9 14.7 10.1 14.4
schedule 31.8 7.8 5.7 13.4
results for cc linear2
cores/node 8 8 8 8
pipeline 27.4 8.5 5.7 6.3
schdule 18.4 4.9 2.5 2.7
results for ibm matick
cores/node 4 4 4 8
pipeline 27.0 7.12 2.1 OOM
schdule 25.1 6.77 2.1 OOM
results for cage13
cores/node 1 2 2 8
pipeline 5104.6 1322.3 335.4 OOM
schdule 7041.2 1316.8 320.2 OOM

Table III
FACTORIZATION TIME IN SECONDS WITH V2.5 AND V3.0 ON CARVER.

E. Performance results of hybrid programming

Table IV shows the results of the hybrid programming

paradigm, where we used different numbers of MPI pro-

cesses and OpenMP threads on 16 compute nodes of Hopper.
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Number of cores
version 8 32 128 512 2048

results for tdr455k
cores/node 1 8 8 8 4
pipeline 250.3 (44.8) 95.0 (42.8) 49.8 (32.2) 44.7 (41.5) 81.0 (80.1)
look-ahead(10) 248.7 (48.0) 97.9 (45.1) 45.9 (31.5) 43.5 (34.1) 67.1 (42.8)
schdule 225.5 (19.4) 70.7 (16.4) 23.7 (9.3) 17.5 (12.2) 37.7 (31.3)
results for matrix211
cores/node 8 24 24 24 8
pepeline 46.9 (13.8) 17.2 (9.3) 10.3 (8.4) 12.8 (12.4) 17.2 (17.1)
look-ahead(10) 48.1 (15.7) 18.6 (10.6) 10.3 (8.1) 10.1 (8.5) 14.9 (10.4)
schedule 41.8 (8.2) 12.7 (4.4) 5.2 (3.1) 4.9 (4.1) 7.6 (6.4)
results for cc linear2
cores/node 8 24 24 24 8
pipeline 30.9 (29.6) 12.3 (7.2) 7.6 (6.5) 6.8 (6.6) 7.9 (7.9)
schedule 24.3 (17.8) 7.5 (2.3) 3.6 (2.4) 2.3 (2.0) 2.7 (2.5)
results for ibm matick
cores/node 8 8 8 8 4
pipeline 46.9 (12.6) 14.9 (4.8) 7.2 (5.5) 5.4 (5.0) 5.2 (5.1)
schedule 46.4 (13.3) 12.5 (3.1) 7.0 (5.0) 5.0 (4.6) 4.8 (4.6)
results for cage13
cores/node 1 4 4 4 4
pipeline 6798.9 (425.8) 1986.4 (287.5) 481.4 (134.9) 139.5 (61.6) 124.5 (107.7)
schedule 8412.5 (600.5) 2085.6 (241.7) 438.6 (86.8) 116.0 (34.6) 47.5 (21.5)

Table II
FACTORIZATION (MPI COMMUNICATION) IN SECONDS, WITH V2.5 AND V3.0 ON HOPPER.

The look-ahead window size is fixed at nw = 10. In the ta-

ble, “time (s)” is the numerical factorization time in seconds.

In addition, next to “mem (GB),” we show the total memory

allocated by SuperLU_DIST for the data structures storing

the distributed LU factors and for the communication buffers

used during the numerical factorization in Gigabytes. This

value does not change with the increase in the number of

MPI processes or OpenMP threads since the serial pre-

processing is used. Finally, under “mem (GB),” we show

the three memory statistics mem, mem1 + mem2, where

mem is the total high watermark of the memory allocated

by SuperLU_DIST, mem1 is the total memory usage

including the system memory before the factorization, and

mem1 +mem2 is the usage after the factorization.4

First, we clearly see that due to the serial algorithms used

by the default setups, mem increased almost proportionally

to the number of MPI processes. We also see that mem1 +
mem2 was significantly greater than mem. This is mainly

because on Hopper, all the libraries are statically linked by

default and this leads to a large executable file. The hybrid

programming paradigm reduces these memory bottlenecks

using OpenMP threads in place of MPI processes. As a

result, the hybrid program could effectively use more cores

on each node, whereas the pure MPI program failed due to

the per-core memory constraint.5

Furthermore, we see that the best time for each matrix

with the fixed node count of 16 was always obtained by the

4 The memory usage was obtained by reading the system file
/proc/(pid)/status.

5The program may fail at a serial bottleneck before the factorization
(e.g., serial equilibration or symbolic factorization).

hybrid paradigm. For example, the best time of the hybrid

paradigm on cage13 was about 2.2 times faster than that

of the pure MPI paradigm (cf., 845.3 seconds with 64 × 1
while 377.2 seconds with 64 × 4). This clearly shows that

the hybrid paradigm was able to better utilize the resources

available on the compute nodes.

Finally, when the same number of cores is used, the

factorization was faster using the pure MPI paradigm on a

small number of cores. However, on a large number of cores,

the hybrid paradigm could avoid the expensive message

passing among the cores on the same NUMA node and

obtained a small speedup over the pure MPI paradigm (e.g.,

3.9 seconds with 128×2 while 5.0 seconds with 256×1 for

matrix211). Figure 12 shows these timing results visually

for tdr455k and matrix211.
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Figure 12. Results of hybrid programming using 16 nodes of Hopper.

Table V shows the results of the hybrid programming
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tdr455k matrix211 cage13
MPI×Thread time (s) mem (GB); 23.3 time (s) mem (GB); 5.4 time (s) mem (GB); 43.3

16× 1 115.6 45.4, 75.2 + 0.8 19.2 15.4, 56.3 + 0.5 3943.7 106.3, 91.5 + 1.1
32× 1 61.5 81.9, 128.0 + 1.1 10.5 30.7, 106.6 + 1.1 1743.3 169.5, 141.7 + 1.8
16× 2 73.1 45.4, 75.2 + 1.5 12.9 15.4, 56.3 + 1.1 2221.0 106.3, 91.5 + 1.8
64× 1 34.9 163.8, 232.0 + 2.0 6.4 61.5, 207.3 + 2.9 845.3 294.3, 243.7 + 3.3
32× 2 41.7 81.9, 128.1 + 2.3 7.6 30.7, 106.6 + 2.4 1014.1 169.5, 141.7 + 3.1
16× 4 51.2 45.4, 75.2 + 2.8 10.2 15.4, 56.3 + 2.4 1297.1 106.3, 91.5 + 3.1

128× 1 22.0 327.6, 441.1 + 6.9 4.1 122.9, 410.5 + 5.0 −− OOM, OOM
64× 2 25.8 163.8, 232.0 + 4.6 5.1 61.5, 207.3 + 5.5 567.2 294.3, 243.7 + 5.8
32× 4 31.5 81.9, 128.1 + 4.8 7.0 30.7, 106.6 + 4.9 750.0 169.5, 141.7 + 5.7
16× 8 41.7 45.4, 75.2 + 5.3 9.1 15.4, 56.3 + 5.0 905.9 106.3, 91.5 + 5.6

256× 1 −− OOM, OOM 5.0 245.9, 830.9 + 8.2 −− OOM, OOM
128× 2 18.5 327.6, 441.1 + 12.0 3.9 122.9, 410.5 + 10.1 −− OOM, OOM
64× 4 21.3 163.8, 232.0 + 9.7 4.8 61.5, 207.3 + 4.6 377.2 169.5, 243.7 + 10.9

Table IV
RESULTS OF HYBRID PROGRAMMING USING 16 NODES OF HOPPER.

on Carver. The behavior of the codes was similar to those

on Hopper. The only significant difference was that much

less system memory was required on Carver. This is mainly

because on Carver, some of the libraries are dynamically

linked, and the executable files is usually much smaller than

that on Hopper.

VII. CONCLUSION

We studied two strategies to enhance the parallel perfor-

mance of SuperLU_DIST on modern multicore architec-

tures. The first strategy schedules independent tasks as soon

as possible to shorten the critical path. The experimental

results demonstrated that the parallel factorization with this

new scheduling strategy is nearly three times faster than

the previous pipelined factorization. The second strategy

uses the hybrid programming to overcome per-core memory

constraint and fully utilize the node-level parallelism on

a NUMA manycore architecture. We incorporated light-

weight OpenMP threads in each MPI process to update

independent blocks of the trailing submatrix. This hybrid

programming could reduce the memory usage significantly,

while achieving the same level of parallel efficiency as a

pure MPI code. As a result, in comparison to the pure MPI

paradigm, the hybrid paradigm utilized more cores on each

node and reduced the factorization time on the same number

of nodes.

In order for our static scheduling scheme to capture the

different computational costs of the panel factorization tasks,

we have assigned weights on the edges in our task depen-

dency graphs (e.g., based on the size of the diagonal block).

Furthermore, the MPI processes are currently assigned to

supernodal blocks before the static scheduling. It might

be beneficial to consider the process-assignment during the

static scheduling such that the leaf-nodes are scheduled in

a round-robin fashion according to the processes assigned

to them. The motivation was to allow multiple processes to

factorize different leaf-nodes in parallel. We have investi-

gated these approaches, but currently, we have not observed

significant improvements over the strategies described in

Section IV.

We currently use the hybrid programming paradigm only

for the trailing submatrix update. We are considering how

we can apply the hybrid paradigm for the panel factorization

and reduce the message-passing overhead.

Finally, we plan to extend our memory profiling studies

of the hybrid programming paradigm. For instance, we have

not measured the amount of memory internally allocated

by MPI during the numerical factorization. These measure-

ments may show more significant advantages of the hybrid

programming paradigm over the pure MPI paradigm.
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